Complex Symplectic Spaces and Boundary Value Problems

نویسنده

  • W. N. EVERITT
چکیده

This paper presents a review and summary of recent research on the boundary value problems for linear ordinary and partial differential equations, with special attention to the investigations of the current authors emphasizing the applications of complex symplectic spaces. In the first part of the previous century, Stone and von Neumann formulated the theory of self-adjoint extensions of symmetric linear operators on a Hilbert space; in this connection Stone developed the properties of self-adjoint differential operators generated by boundary value problems for linear ordinary differential equations. Later, in diverse papers, Glazman, Krein and Naimark introduced certain algebraic techniques for the treatment of appropriate generalized boundary conditions. During the past dozen years, in a number of monographs and memoirs, the current authors of this expository summary have developed an extensive algebraic structure, complex symplectic spaces, with applications to both ordinary and partial linear boundary value problems. As a consequence of the use of complex symplectic spaces, the results offer new insights into the theory and use of indefinite inner product spaces, particularly Krein spaces, from an algebraic viewpoint. For instance, detailed information is obtained concerning the separation and coupling of the boundary conditions at the endpoints of the intervals for ordinary differential operators (see the Balanced Intersection Principle), and the introduction of the generalized boundary conditions over the region for some elliptic partial differential operators (see the Harmonic operator).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge Theory and Symplectic Boundary Conditions

We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on differential forms and use them to establish Hodge theory by proving various form decomposition and also isomorphisms between the symplectic cohomologies an...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

Complex Symplectic Geometry with Applications to Ordinary Differential Operators

Complex symplectic spaces, and their Lagrangian subspaces, are defined in accord with motivations from Lagrangian classical dynamics and from linear ordinary differential operators; and then their basic algebraic properties are established. After these purely algebraic developments, an Appendix presents a related new result on the theory of self-adjoint operators in Hilbert spaces, and this pro...

متن کامل

Proceedings of the Arnoldfest SYMPLECTIC GEOMETRY ON MODULI SPACES OF HOLOMORPHIC BUNDLES OVER COMPLEX SURFACES

We give a comparative description of the Poisson structures on the moduli spaces of at connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classiied by restrictions of the bundles to certain divisors. This can be regarded as xing a \complex analogue of the holonomy" of a connecti...

متن کامل

Symplectic Geometry on Moduli Spaces of Holomorphic Bundles over Complex Surfaces

We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a “complex analogue of the holonomy” of a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005